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MARAGONI CONVECTION IN A TWO-LAYER SYSTEM 

Yu. A. Buevich and V. M. Kitaitsev UDC 532.68:536.25 

Equations are obtained that goverrL the characteristics of weakly nonlinear concen- 
tration and thermocapillary convection stabilized by the nonlinearity of convective 
transport of impurity mass and heat. 

Under unstable surface tension conditions depend on the impurity concentration or temper- 
ature on the interface of two ~mmiscible fluids, the appearance of the instahility of the mass 
or hea~ transport process through this boundary (Marangoni effect) is possible. For plane 
interfacial surfaces such an instability was apparently first considered in [1-3], and was 
then investigated in a very large number of papers with diverse physicochemical factors and 
the curvature of the surface itself taken into account. 

Ordered or chaotic convective motions (in~erphasal con~ection or turhulence) which are 
capable of significant intensification, of the mass as well as heat transport through this 
surface [4-6], are formed as aresult of the mentioned instability in domains adjacent to the 
interfacial surface. Thus, for instance, the effect mass transfer coefficient during extractio~ 
in liquid-liquid systems can be increased because of natural or artificially produced Marangoni 
convection by 2-10 times as compared with analogous stable systems [71. 

If known numerical investigations of interphasal con~ective structures of the type per- 
formed in [8] are excluded from consideration, then attempts at a nonlinear analysis of the 
result of the appearance of the Marangoni instability, which are perfectly necessary for 
estimation of the parameters of these structures, are limited, in practice, to weakly nonlinear 
problems to which the method of the small parameter developed in [9-11] is applicable. However 
even in this case the calculations and final equations turnout to be quite awkward, which 
requires their asymptotic and numerical analysis for comparatively simple particular situation. 
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In this effort, in particular, it turns out to be expedient to consider separately [ii] the 
possible nonlinearities in the system that result in stabilization of the perturbations that 
grow because of the instability. 

We here assume that only the specific nonlinearity for the convective diffusion of heat 
conduction equations is essential while all the remaining nonlinearities can be neglected in 
a first approximation. This means that the interfacial surface should be considered impertur- 
bable within the framework of the appropriate problem, the surface tension coefficient should 
be considered as a linear function of the surface concentration or temperature, and the liquid 
motion in the domains on both sides of the interfacial surface should be described in the 
Stokes approximation. Such a situation is perfectly realistic if the Schmidt (Prandtl) 
number is large compared with one, the dependence of o on y or T s can be approximated suf- 
ficiently accurately by a linear function and the pressure perturbations at the surface, 
due to the origination of convective structures, are less in order of magnitude than the 
characteristic surface pressure ok. 

For definiteness, we consider first the concentration-capillary convection near the 
surface z = 0 that separates a finite thickness liquid layer into upper and lower half-spaces. 
We consider the thickness of both layers large as compared with the characteristic dimension 
(period) of the convective structure, which permits neglecting exponentially small terms in 
the calculations and we consider just structures formed by cylindrical "shafts" which permits 
us to limit the analysis to plane hydrodynamics and convective diffusion problems. (Such 
bandlike cells, similar to unimodal convective, cells are ordinarily observed for a shallow 
setting in the instability domain [12]). Later the results obtained for the concentration- 
capillary convection are also extended to thermocapillary convection. 

:t 

Below we consider the state of rest in the presence of mass flow normal to the inter- 

facial surface 

Qo= D1~I = D~, (i) 

as unperturbed, so that the impurity concentration in the liquid layers is 

C ~ j = c ~ j - -  ~jz,  ] = 1, 2. (2) 

The unperturbed surface concentration equals 

O/lgs 1 rn2f, s2, (3) 

i.e., the volume concentrations on both sides of the interfacial surface do not certainly 
agree. The coefficients mj in (3) are determined by the thermodynamic equilibrium conditions 
of the dissolved substance in the bulk phases and in a thin (practically monomolec~lar) layer 
on the interfacial surface. We approximate the surface tension coefficient by the function 

= ~ (V) = o ~  a%,, ( 4 )  

where a > 0 for surfactants, and a < 0 for inactive substances. 
formula, the coefficient a is possitive for an analogous dependence of o on the surface 

temperature. 

The linear Stokes equations and its hourLdary conditions, with (4) taken into account, 
result in the following proSlem for the stream function [Ii] 

(~,jA -- O/Ot) A S j = O ;  

Ox Ox 

I~ 2 8 z  z 8 x  ~ . . . .  

~1 -+0 ,  z--+ oo; ~2-+0, z ---+--oo ; 

- - = o ;  ar O~; z--O; 
c)z c)z 

) 8%, a2r a2r = - -  a .... z = 0 
,a~ Oz z Ox 2 ax ' 

In. conformity with the Atvesh 

(here hl and h2 tended to infinitely; as is easy to show, the errors originating here are 

exponentially small). 

The convective diffusion equation in the liquid layers and the corresponding boundary 

conditions are 

(5) 

562 



Oc#Ot -}- vy V (c~ + cj) = Djhcy; c 1 -- O, z = hi; c2 = O, z = - -  h~; 

rn~Q = rn~_c~ = ~; z = O; 

87 8 z =  O. Ot + --ffff [(yo + 7) Vx] = D1 8ci D. 8c2 . 
5x 2 Ox ' 

(6) 

The last boundary condition is substantially the impurity mass conservation equation in 
the surface layer with its exchange with the adjoining volume phases taken into account. The 
passage to the limit h v § ~ cannot possibly be realized in, this case because the problem (6) 
degenerates here and turns out to be undefined. 

For simplification, surface elasticity and viscosity effects, as well as the surface 
diffusion effects were not taken into account in (5) and (6). The role of the effects men- 
tioned was investigated in sufficient detail in [3, 13] say. The initial conditions need not 
be considered in (5) and (6) since periodicity conditions are actually used later. 

Let us consider ordered convective flows of small, but finite, amplitude when it is 
allowable to represent any quantity dependent on. the time an coordinates in the form [ii] 

~"~8 n [(I) e in0 ' , --~n0x 

n = t  

0 = E20)t - -  kX, (1) 1 --~- QT01o + 82(I)12 "~- . . . .  

(7) 

where ~ depend only on z while the wave number k is considered real. The quantity m is also 
considered real in, stationary modes. The parameter g is introduced for convenience in, 
extracting terms of different order in the amplitude of the fundamental (first) harmonic; at 
the end of the calculations we should set ~ = i. The quantity m in (7) is considered small 
at once, which is confirmed entirely by the subsequent calculations. 

Substituting expansions of the type (7) for the stream function and concentration in 
problems (5) and (6) and separating quantities of different orders in r in, the latter, we 
arrive at a series of problems of different approximations to determine the coefficients in 
the mentioned expansions by a standard means. Solving the equations of such problems, ob- 
tained from (5), and taking account of the condition at infinity and the disappearance of 
the normal velocity component on, the surface z = O, we arrive at the following representations 
for the expansion, coefficients of the velocity component in the upper layer (to simplify the 
writing, we omit the subscript i corresponding to this layer in the notations) [ii]: 

V~o = V~o = O, V~lo = B (1 - -  kz) e - ~ ,  V~lo = ikBze -k~, 

V ~  : B '  (1 - -  2kz) e -2kz, Vz~ = 2ikB'ze -2k~, (8 )  

Vxl~ ico Bz (2 -- kz) e - ~ ,  Vz12 = ~ Bz2e -~z �9 
4kv 4v 

C o m p l e t e l y  a n a l o g o u s l y ,  a f t e r  c a l c u l a t i o n s  we o b t a i n  f o r  t h e  c o e f f i c i e n t s  o f  t h e  c o n c e n -  
t r a t i o n  expansion (7) in the upper liquid layer with conditions on its upper boundary taken 
into account (we again omit the subscript i) 

( Cxo = A ~ 4kD 

i[ 
C o = C ( z - - h ) + - - ~  i (AB*  - -  A*B) 

B z )  e -k~ + . . . .  

5~ B B , ] (  1 + z ' ~ e _ 2 ~  
4k2D - ~  + . . .  

C o =  A'  + ~ iAB + i~ B '  + - -  B 2 e -~ . . . .  
" 2k 32kZD 

2ku ~ + ~ B -  BC + 

+ ~ A B  - - 2 A * B ' +  16kZ ~ 16kU 

+ 512k3D ~ 8kD " ~  A 'B* - -  A*B'  + 

(9) 
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+ 3i~ B*B' 3i ABB*-]- 565[~ B2B, .jr_ 3i A,B2][e_ak z 
4kZD 16kD 512k3D --------~ -8kD JJ -/- " " " (9)  

Terms containing z to powers above the first, which do not affect the equations to de- 
termine the constants of integration, that follow from the boundary conditions not used in (5) 
and (6), are denoted by the three dots. Exponentially small quantities proportional to exp-: 
(-nkh) were omitted in (9) in conformity with the above. The definition of c ~ from (2) and 
the relationships for the expansion coefficients for the velocity components from (8) were 
used to obtain (9) from (6). 

Corresponding results for the lower liquid layer are obtained formally from (8) and (9) 
upon changing the sign of the quantities ~, k, ~, and i. Therefore, the relations (8) and 
(9) determine the solution of the problems (5) and (6) in both liquid layers in the form of 
the expansions (7) inwhich only the nearest side harmonics are taken into account in addition 
to the fundamental. This corresponds to keep terms of order not higher than the third ink 
powers of s in all equations. The relationships (8) and (9) for both layers include ten 
integratlon constants A~, A., B4, B=, and C= (3 = i 2) which should be determined from the 

J J a J " ' , 
remaining unused continuity conditions for ~he tangential velocity component and the balance 
of the tangential stress on the interfacial surface in (5) and the coupling conditions between 
the bulk concentration on both sides of this surface and the balance of the impurity mass in 
the surface layer in (6). Three equations for the constants follow from each of the conditions 
mentioned, and correspond to the zeroth, first, and second harmonics being considered. Two of 
the equations for the zeroth harmonic here degenerate into the identify 0 = 0. In particular, 
it follows from the continuity of the tangential velocity component that BI = B2 = B and B~ = 
B~ = B', which we take into account in writing the remaining equations. 

The condition imposed on the bulk concentrations on the interracial surface in (6) results 
in the following three equations 

m~ - -  h~C~ + i (AxB* - -  A~ B) 4k~D-~- 7 

I e2 [i (A; B* - -  2AtB') ml + 
k 

1 [ A2 B) -~ h 2 C ~ q - ~  i(A~B*-- * 

21~1 B*B' -t- 9 A1BB* -[- 
16k2D1 16 kD 1 

51~2 BB*]} = 5 7 ,  
4kZD2 

(10) 

1175i[31 BZB, 7 A,BZ =m,, A2-t--8-k--~-i 
-}- 512k3D~ 8kD~ " 

2A* ' 21[~e B*B'-~ 9 A,BB* 1175i[~2 B2B, 7 A,BZ]} = r, mlA; = m.~A; = r'. 
- -  2B ) +  16k2D~ 16kD~ - 512k"D~ -}-8kD---T 

The q u a n t i t i e s  6T, r and F' w i t h  t h e  s e n s e  o f  complex  a m p l i t u d e s  o f  t h e  z e r o t h ,  f i r s t ,  and 
second  h a r m o n i c s  o f  t h e  p e r t u r b a t i o n  y i n  t h e  s u r f a c e  c o n c e n t r a t i o n  a r e  i n t r o d u c e d  h e r e .  
The q u a n t i t y  6Y e v i d e n t l y  d e s c r i b e s  t h e  change  i n  t h e  mean, c o n c e n t r a t i o n  as  compares  w i t h  i t s  
u n p e r t u r b e d  v a l u e  yo d e f i n e d  i n  (3)*. 

The condition for balance of the tangential stress from (5) yields 

" ~i~%~ ) 
!2~v ~ + p+ B = iar, 2~t+B' = iaF'; 
, (11) 

in this case the equation for the zeroth equation degenerates. 

The condition of impurity mass balance from (6) results in the equations 

D1C 1 = D.~C2, 

[ ikf;B + ~ -- io~r + ik (r*B' + r'B*) + iknq - -  thC~ + 4----kD---f" • 

• (A~B* - -  A~B) - -  56~ ] } 16k3D31 BB* B = kRr-q- i~-4k B q- 

I ir 3g 3q g 
+ e2 ]__ F'B* -+- FBB* - -  B'B* - -  ~ F*B 2 -[-- 

L 4 64k 64k 2 32k 
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+ (oS B - - ~  45in ] io)r F + (C., - -  Ci) B - -  B~B * 
2k 8k 3 4k 2048k ~ J' 

i y ~  ' -  i--f--r rBq  i ~ -  B' f f  q BK 
8k 16k ~ 256k 3 

(12) 

Here we introduced the quantities 

~+ = ~1 + p-2, o + = pl  + 02, ~ -  = i32 - -  [31, 

1 1 1 1 [32 
m 1 m2 rnlD1 m2D2 D2 

~I R = D1 + D2 
n 

m ~ D~' ma m~ 2 

DI 

(13) 

Let us consider the general principles of the analysis of the system (10)-(12) for the 
constants of integration [ii]. It is already evident from (7) that the amplitudes of the 
fundamental harmonics are the sum of terms of the order of e and e ~ within the limits of 
the accuracy taken. The amplitudes of the zeroth and second harmonics are on the order of ~ 
Consequently, only terms of order s, but not g3, whose definition corresponds to linear 
stability theory, need be taken into account in their representation from the appropriate 
equations in (10)-(12) in terms of the first harmonic amplitudes in the latter. We obtain 
from the equations in (I0) and (ii) corresponding to the first harmonic, to the accuracy 
mentioned. 

At--- -  2ip+ B, F------ 2i~+.B, ]---- 1, 2 
amj a (14) 

(hence and from the second equation in (12) written with terms of order ~2, neglected the 
equation for the neutral stability curve can evidently be obtained). 

Substituting (14) into the first equation in (I0) and (12), we obtain an expression for 
the nonzero amplitudes of the zeroth harmonic: 

C, = m~h~Dz-~ rn2h2Dx ~ Dz DI ' + \ D2 D~ J J D2 

mlhlD2 + m~h2D1 _ ~  (mlh 1 + rn2h2) + 5mlrt%16k ----T- '  ~2hlD__~ + ~lhz~_1 i 6. 

5 = BB* = IB[ 2, 

(15) 

Representations for the amplitudes of the second harmonic follow analogously from the 
last equations in (10)-(12) 

mj 2V+ 8k / 256k 3 ~ ~~ ~- -1 - - '  . " 1 - - ~  B2' / =  1, 2 .  ( 1 6 )  

Now, keeping in mind the analysis of the slightly nonlinear problem under consideration, 
we use (15) and (16) in the equations for the first harmonic in (10)-(12) taking all the terms 
written down in them into account. As a result of calculations we obtain 

Aj={ 2i$+ ..f r i6 I m_~_ il 7arnjgj ) 
arni 2amjk 2 8kDj 32p+Djk 2 x 

'. a --~-. 256k 3 (R-I- ~2p+a (~,o 16k ~[~- ))-1 -k (-- 1)i 8am~D~k23p+ ( 1 lt175amj~472p+Dj k2 ) l l  B, .(17) 

F = (  2ip+ ~- ~ ) B' ] = 1  2 , a  2ak 2 ' 
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as well as the sovabilitycomdition for the system of equations of the first harmonic con- 
sidered as linear with coefficients dependent not only on. the physical regime parameters and 
k but also on 8 (i.e., the condition for the presence of a nontrivial solution B # 0 for 8 = 
const) : 

i~o:~ (k) = A (/~) + ~:. (~). 
(18) 

Here we introduced the following functions of k: 

( I "+ 
r t* + + + _ f a (k )=2  l q - - ~ -  - - ~  -8k a , 

f~(k)=_2R~+k--a(y ~ 4I~ ~ [~----~- ) k ,  

,3(k)---- a (rq- 3qa2 ) [ ~  (lq- r i q ][R~___~a ( ~-)]-x ---$ 32~+k z'  ~ 256k 3 2~+ yo__ 5g~+ 45na , 16k z 32k 2048ka (19) 

' { ' 
- -  mlh~D~ -}- m~h~Dt ~+ (mlhl -t- m~h2) -~ 5mlm~al6k a \( ~hlD2 -t- ---n--~..1: + 13th~ ~ 

q- (D2 -- D~) ~ D~ D l , -}' ~ D2 2 + D z t J {" 

We took c = i at once in (17) and (19). Since it was actually assumed that the Reynolds 
number is much less than the Peclet number (which was the basis for neglecting nonlinear terms 
in the Navier--Stokes equations while conserving such terms in the convective diffusion 
equations), then we should take vj>>D:i and should set S = q in (13). 

If i~==+i~, then it is easily seen from (18) and (19) that the frequency of ~ of the 
convective motion is identically zero, and the increment is 

= f71 (k)if2 (k) q- 6f3 (k)]. (20) 

Within the framework of linear theory, we should set ~ = O in (20), i.e., the neutral stabil- 
ity curve is determined by the equality f2/fl = 0. 

Let a > 0. We consider the case ~-=~2--~i>0 when the impurity flux is directed from the 
layer with the smaller to the layer with the higher diffusion coefficient (for definiteness, 
we consider the ~J positive). Then taking account of (I) and (13) it is easy to see that S = 
q > 0, i.e., it follows from (19) that fl > 0. In this case the state of rest is unstable 
relative to perturbations whose wave number is less than the critical value: 

k . < k , ,  k, =-~-  yo_k_2Ra_l~+. , (21) 

which agrees with the classical result (see [2, 13], say). 

If ~-=~2--~i<0 holds for a > 0, then D2 > DI and S = q < 0. In this case f2 < 0 for all 
k > 0 and fl changes sign for k = k* while remaining positive in the domain k > k*. The 
equation 

k *~ -k (rp+ -+- Rp+/2) k *z - -  a Iql/8 = 0 (22) 

for k* follows from (19), and as is easy to show. has a unique positive real root. The in- 
stability in this case holds for k < k,, ~ k*; the critical value k* does not determine the 
boundary of the stability domain exactly because we have fl~ 0 for k~ k*, i.e., ~, and 
therefore also m carmot possible be considered small in opposition to the assumption in (7). 
For an/analogous reason the proposed theory does not generally ield conditions for the onset 
of instability relative to perturhas with a nonzero (or in any case not small) frequency 

For complete definiteness of the results obtained it is necessary to find k and 6, which 
had been considered as parameters up to now. We obtain the equations for them from the 
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conditions of stationary of the ordered convective structure under consideration as was 
proposed in [Ii, 14], i.e., we require the increment ~ from (20) and its derivative with 
respect to k to be zero for ~ = constant. We have 

f~ (k) + 6f3 (k) = 0, f~ (k) + 6f~ (k) = 0, (23) 

where the prime denotes differentiation with respect to k. The extremum e should be the 
maximum [ii, 14]. 

Investigation of (23) in application to specific systems of different kinds is fraught 
with very tedious calculations and is an independent problem. Here we just mention that the 
theory proposed should be valid in the case the values of k and ~ obtained from (23) satisfy 
the inequalities k > 0, 0 < ~<<I. If it turns out that 691 then this theory is at least 
not exact, if 6 < 0, then the assumption taken about the establishment of an ordered convective 
structure is apparently not valid and actually results in the generation of chaotic motion, 
i.e., interphasal turbulence, for appropriate value of the Marangoni instability parameters. 

Let us mention the presence of an original scale effect in the system. As is seen from 
(19), the form of the function f3 depends substantially on the relationship of the layer 
thicknesses even for hi>> k -I, where k -I is the characteristic dimension of the structure. 
This means that the linear scale and intensity of the convective motion depend substantially 
on firstly the thickness of the liquid layers even if their main volume is not entrained in 
the motion, and secondly, on the features of the diffusion flux organization in the unper- 
turbed system (the kind of boundary conditions on the layer outer boundaries). 

In conclusion, we mention that all the equations obtained can be reformulated in appli- 
cation to an analogous problem on thermocapil!ary convection. In this case, we have a con- 
tinuous temperature field instead of the unperturbed concentration fields (2) and we intro- 
duce the temperature dependence of the surface tension coefficient in pla~e of (4). The 
relationships (3) are formally valid for mj = 1 but the introduction of surface temperature 
as an additional variable is inexpedient. The heat-conduction (in (i) and in the last 
condition in (6)) or thermal diffusivity (in the equations from (6)) coefficients must be 
considered in place of Dj. In this case the problem (5) retains its form upon replacement of 
y by T s in the boundary conditions, and the problem (6) changes in the respect that temperature 
and heat flux continuity conditions are given simply on the z = 0 plane. The relationships 
for the amplitudes of the different quantities are completely analogous to (15)-(17), Eqs. (18), 
(20), and (23) retain their form but with other functions fj(k) that differ from (19). Be- 
cause of insufficient space, the relationships for the thermocapillary slightly nonlinear 
convection are not written down here. 

NOTATION 

a, a coefficient in (4); A, A v, B, B', C, integration constants; c, volume concentration; 
D, diffusion coefficient; f, functions defined in (19); h, liquid layer thickness; k, wave 
number; m, constant of sorption equilibrium; g, n, q, R, r, S, parameters defined in (13); t, 
time; v, velocity; x, z, coordinates; ~, increment in vibration growth; $, concentration 
gradient; y, surface concentration; 6, amplitude squared; ~, a fictitious smallness parameter; 
~, v, dynamic and kinematic viscosity; p, density; o, surface tension coefficient; ~, stream 
function; ~, m, real and complex frequencies. Subscripts; layer number or harmonic nm~ber; 
s, z = 0 interface; degree is the unperturbed state of rest; amplitudes of the variables are 
denoted by appropriate capital letters. 
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STABILITY CRITERION OF THREE-DIMENSIONAL PERTURBATIONS ON CONCAVE 

ELASTIC SURFACES 

N. F. Yurchenko and V. V. Babenko UDC 532.526 

Stability criteria are determined experimentally for the boundary layer on concave 
elastic surfaces in the preturbulent transition region. 

As always, the investigation of the physical processes of turhulent boundary-layer 
formation remains urgent for a broad class of scientific and practical problems. The structure 
of the perturbing motion in different stages of laminary boundary-layer transition into tur- 
bulent and the process of transformation of plane into three-dimensional perturbations are 
studied experimentally in [i], in longitudinal vortices of the Benny--Lin type on a fiat plate, 
and in Goertler vortices on a curvilinear plate. The general features and regularities of 
formation and existence of these vortical systems are determined and the Goertler neutral 
curve is first constructed by experimental means. 

The possibility of controlling the hydrodynamic stability by using different elastic 
plates is studied in [2], and three-dimensional perturbations on a rigid plate in [3]. 

The purpose of the present paper is to investigate the influence of an elastic surface 
on the stability of longitudinal vortices and to determine the possibility of controlling 
three-dimensional perturbations, particularly, for heat- and mass-transfer problems. 

The methodology of the experiment is based on the susceptibility of the boundary layer 
to different perturbations [i, 4, 5]. According to these representations, under ideal flow 
conditions prerequisites exist for the generation of perturbations in the form of Tollmien-- 
Schlichting waves with their subsequent transformation into more complex types. Factors de- 
grading the hydrodynamic stability (for instance, the high degree of main flow turbulence, 
streamlined surface roughness, etc.) result in magnification of the perturbing motions. The 
greater the intensity and quantity of the degrading factors, the more rapidly donatural 
boundary layer perturbations develop. The susceptibility problem consists of studying the 
nature of the interaction at different stages of boundary layer transitionbetween existing 
natural perturbations and those induced from outside. 

OrL the basis of this definition the linear and Goertler instabilities are particular 
cases of the Susceptibility problem whose investigation must be conducted under the greatest 
possible ideal fluid flow conditions and the induction of small perturbations. On the one 
hand, by this the influence of uncontrollable factors and nonlinear interaction of the induced 
a~d natural perturbations on stability is eliminated, and on the other, the possibility is 
achieved of determining the boundary-layer reaction to perturbations of a given scale. The 
induced small plane perturbation s magnify and interact with the natural perturbations inthe 
linear stability investigation. Small three-dimensional perturbations, which excite the 
existing plane natural perturbations and result in their rapid transformation into three- 
dimensional perturbations that imteract with the induced perturbations are introduced into the 
boundary layer in the study of the Goertler instability. 
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